Methane Dication: Planar but Not Square

Ming Wah Wong and Leo Radom*

Research School of Chemistry
Australian National University
Canberra, A.C.T. 2601, Australia
Received July 12, 1988
The doubly charged ion of methane $\left(\mathrm{CH}_{4}{ }^{2+}\right)$ is of fundamental importance among gas-phase dications ${ }^{1}$ and has been the subject of many experimenta 1^{2} and theoretical ${ }^{2 d, 3}$ studies. The highlight of the theoretical studies has been the demonstration that the methane dication is the simplest species containing a planar, tetracoordinate carbon atom. The best theoretical calculations to date ${ }^{3 c, d}$ have indicated that $\mathrm{CH}_{4}{ }^{2+}$ has an anti-van't Hoff square-planar ($D_{4 h}$) geometry, in contrast to the tetrahedral (T_{d}) structure of neutral methane, and this conclusion has been widely accepted.

We show here, through calculations of the geometry at much higher levels of theory than those previously employed, that the methane dication is planar but distinctly not square. The square-planar ($D_{4 h}$) geometry of $\mathrm{CH}_{4}{ }^{2+}$ does not in fact correspond to a minimum on the potential energy surface at the higher levels of theory. The preferred structure of $\mathrm{CH}_{4}{ }^{2+}$ is found to be planar with $C_{2 v}$ (rather than $D_{4 h}$) symmetry and is characterized by two long and two short $\mathrm{C}-\mathrm{H}$ bonds and a narrow HCH bond angle between the two longer $\mathrm{C}-\mathrm{H}$ bonds. It thus resembles a complex between the methylene dication $\left(\mathrm{CH}_{2}{ }^{2+}\right)$ and a hydrogen molecule.

Our initial ab initio calculations ${ }^{4,5}$ involved geometry optimizations of $C_{2 v}$ (1) and $D_{4 h}$ (2) structures of $\mathrm{CH}_{4}{ }^{2+}$ (see Figure 1) with three different basis sets, namely $6-31 \mathrm{G}^{*}, 6-31 \mathrm{G}^{* *}$, and $6-311 \mathrm{G}^{* *}$, and with electron correlation incorporated via Møller-Plesset perturbation theory terminated at second (MP2)-, third (MP3)-, or fourth (MP4)-order, ${ }^{8}$ via configuration interaction calculations with single and double substitutions (CISD), ${ }^{8}$ or via full-valence CASSCF theory. ${ }^{9}$ A selection of optimized geometries is shown in Table I and corresponding total and relative energies in Table II. ${ }^{10}$

[^0]

Figure 1. Optimized structures (MP3/6-311G** values, with MP2/6$31 G^{*}$ values in parentheses) for methane dication.

With the (smallest) 6-31G* basis set, both $C_{2 v}$ (1) and $D_{4 h}$ (2) structures of methane dication are found to be stable minima (confirmed by frequency calculations at both Hartree-Fock and MP2 levels) on the potential energy surface. The $C_{2 v}$ structure (1) resembles a complex between the $\mathrm{CH}_{2}{ }^{2+}$ dication and a hydrogen molecule and thus is strikingly different from the $D_{4 h}$ form (2), but the energies of $\mathbf{1}$ and $\mathbf{2}$ are very similar (Table II). At the MP2 $/ 6-31 G^{*}$ level, we have located a transition structure 3 (Figure 1) connecting $\mathbf{1}$ and 2, but it lies just $1 \mathrm{~kJ} \mathrm{~mol}^{-1}$ above 1.

Calculations with the inclusion of p polarization functions on hydrogen ($6-31 \mathrm{G}^{*} \rightarrow 6-31 \mathrm{G}^{* *}$) favor strongly the $C_{2 v}$ structure (Table II). Although the $D_{4 k}$ geometry (2) is a true minimum at the HF/6-31 G** level, at the MP2 level it corresponds to a second-order saddle point (as shown by a degenerate pair of imaginary frequencies). Rearrangement of 2 (at MP2/6-31G**) along the normal coordinates representing these frequencies leads without a barrier to 1 .

The results for the triple- ζ valence $6-311 \mathrm{G}^{* *}$ basis set confirm the strong preference for the $C_{2 v}$ structure 1 over the $D_{4 h}$ form 2. With this basis set, the $D_{4 h}$ structure $\mathbf{2}$ is no longer a local minimum on the $\mathrm{CH}_{4}{ }^{2+}$ potential energy surface: it represents a second-order saddle point at both Hartree-Fock and MP2 levels. The preferred planar $C_{2 v}$ structure 1 is characterized by the following harmonic vibrational frequencies (MP2/6-311G**, scaled ${ }^{11}$ by 0.93): $906\left(a_{1}\right), 942\left(b_{2}\right), 1022\left(a_{2}\right), 1105\left(b_{1}\right), 1426$ $\left(a_{1}\right), 1608\left(b_{2}\right), 2163\left(a_{1}\right), 2570\left(a_{1}\right)$, and $2671\left(b_{2}\right) \mathrm{cm}^{-1}$. At our best level of optimization (MP3/6-311G**), 1 has a bond angle $\mathrm{H}_{1} \mathrm{CH}_{4}$ of 47.7° and bond lengths $\mathrm{C}-\mathrm{H}_{1}$ and $\mathrm{C}-\mathrm{H}_{2}$ of 1.277 and 1.136 \AA, respectively. The $\mathrm{H}_{1} \cdots \mathrm{H}_{4}$ distance is $1.032 \AA$ (Figure 1).

Results at still higher levels of theory (Table II) indicate that there is little change in the relative energy in going from the $6-311 \mathrm{G}^{* *}$ to the $6-311 \mathrm{G}(2 \mathrm{~d}, 2 \mathrm{p})$ basis, while inclusion of diffuse functions and f polarization functions reduces the relative energy by about $3 \mathrm{~kJ} \mathrm{~mol}^{-1}$. It is evident that all calculations using basis

Table I. Optimized Geometries for the Planar $C_{2 v}$ (1) and $D_{4 n}$ (2) Structures of $\mathrm{CH}_{4}{ }^{2+}$

	$C_{2 v}(1)$					$\underline{D_{4 h}(2)}$
	$r\left(\mathrm{C}-\mathrm{H}_{1}\right)$	$r\left(\mathrm{C}-\mathrm{H}_{2}\right)$	$r\left(\mathrm{H}_{1}-\mathrm{H}_{4}\right)^{a}$	$\angle \mathrm{H}_{1} \mathrm{CH}_{4}$	$\angle \mathrm{H}_{2} \mathrm{CH}_{3}$	r r(C-H)
HF/6-31G*	1.238	1.119	1.000	47.7	122.2	1.167
MP2/6-31G*	1.232	1.136	1.085	52.3	118.8	1.176
HF/6-31G**	1.256	1.119	0.988	46.3	123.8	1.166
MP2/6-31G**	1.250	1.127	1.022	48.3	122.7	1.170
HF/6-311G**	1.275	1.120	0.995	45.9	124.8	1.169
MP2/6-311G**	1.268	1.134	1.046	48.7	123.2	1.177
MP3/6-311G**	1.277	1.136	1.032	47.7	124.1	1.179
CISD/6-311G**	1.280	1.134	1.022	47.0	124.5	1.178
CASSCF/6-311G**	1.304	1.143	1.002	45.2	126.2	1.193

${ }^{a}$ Nonindependent parameter, included for completeness.

Table II. Calculated Total Energies (hartrees) and Relative Energies ($\mathrm{kJ} \mathrm{mol}^{-1}$) for the Planar $C_{2 v}$ (1) and $D_{4 h}$ (2) Structures of $\mathrm{CH}_{4}{ }^{2+a}$

	total energies ${ }^{\text {b }}$		relative energies	
	$C_{2 v}(1)$	$D_{4 h}(2)$	$C_{2 v}(1)$	$D_{4 h}(2)$
HF/6-31G*	-39.04744 (0)	-39.04694 (0)	0	1.3
MP2/6-31G*	-39.15268 (0)	-39.15491 (0)	0	-5.9
MP3/6-31G*	-39.16597	-39.16805	0	-5.5
MP4/6-31G*	-39.17050	-39.17245	0	-5.1
CISD/6-31G*	-39.16657	-39.16849	0	-5.0
CASSCF/6-31G*	-39.12776	-39.12729	0	1.2
HF/6-31G**	-39.06549 (0)	-39.05821 (0)	0	19.1
MP2/6-31G**	-39.18474 (0)	-39.17961 (2)	0	13.5
HF/6-311G**	-39.07680 (0)	-39.06668 (2)	0	26.6
MP2/6-311G**	-39.21196 (0)	-39.20642 (2)	0	14.5
MP3/6-311G**	-39.21293	-39.20668	0	16.4
CISD/6-311G**	-39.21285	-39.20590	0	18.2
CASSCF/6-311G**	-39.15928	-39.14844	0	28.5
MP4/6-311G(2d,2p) ${ }^{\text {c }}$	-39.22505	-39.21882	0	16.4
ST4CCD/6-311G(2d,2p) ${ }^{\text {c }}$	-39.22646	-39.22012	0	16.6
HF/6-311+G(2df, 2p ${ }^{\text {c }}$	-39.07944	-39.06941	0	26.3
MP2/6-311+G(2df,2p) ${ }^{\text {c }}$	-39.21046	-39.20589	0	12.0
MP3/6-311+G(2df,2p) ${ }^{\text {c }}$	-39.22948	-39.22471	0	12.5
MP4/6-311+G(2df,2p) ${ }^{\text {c }}$	-39.23504	-39.23007	0	13.0
CCD $/ 6-311+\mathrm{G}(2 \mathrm{df}, 2 \mathrm{p})^{\text {c }}$	-39.23244	-39.22703	0	14.2
ST4CCD $/ 6-311+\mathrm{G}(2 \mathrm{df}, 2 \mathrm{p})^{\text {c }}$	-39.23640	-39.23129	0	13.4

${ }^{a}$ Geometries fully optimized at the level specified, unless otherwise noted. ${ }^{b}$ Number of imaginary frequencies in parentheses. ${ }^{c} \mathrm{MP} 3 / 6-311 \mathrm{G} * *$ optimized structures.
sets larger than $6-31 \mathrm{G}^{*}$ clearly favor the $C_{2 v}$ structure 1 over the $D_{4 h}$ structure 2. At our best level of theory, which involves large basis set coupled-cluster calculations at the ST4CCD level ${ }^{12}$ (ST4CCD $/ 6-311+\mathrm{G}(2 \mathrm{df}, 2 \mathrm{p})$), the $C_{2 w}$ structure 1 is more stable than the $D_{4 h}$ structure 2 by $13 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Zero-point vibrational correction leads to a final prediction of $4 \mathrm{~kJ} \mathrm{~mol}^{-1} .{ }^{13}$

As noted earlier, the $C_{2 v}$ structure 1 can be regarded as a complex of the methylene dication and a hydrogen molecule. The calculated stabilization energy associated with this three-center two-electron ($3 \mathrm{c}-2 \mathrm{e}$) donor-acceptor interaction ${ }^{14,15}$ is 381 kJ mol $^{-1} .^{16}$ A similar donor-acceptor complex has been reported ${ }^{17}$
(11) Hout, R. F.; Levi, B. A.; Hehre, W. J. J. Comput. Chem. 1982, 3, 234.
(12) ST4CCD signifies coupled-cluster calculations with explicit inclusion of double substitutions and with single and triple substitutions included via fourth-order perturbation theory: Raghavachari, K. J. Chem. Phys. 1985, 82, 4607.
(13) Calculated zero-point vibrational energies (MP2/6-311G**// MP2/6-311G**) are 92.7 (1), 82.4 (2), 83.5 (4), 89.5 (5), $44.0\left(\mathrm{CH}_{2}{ }^{2+}\right)$ and $27.1\left(\mathrm{H}_{2}\right) \mathrm{kJ} \mathrm{mol}^{-1}$; these are scaled ${ }^{11}$ by 0.93 for subsequent use.
(14) Collins, J. B.; Schleyer, P. v. R.; Binkley, J. S.; Pople, J. A.; Radom, L. J. Am. Chem. Soc. 1976, 98, 3436.
(15) Koch, W.; Frenking, G.; Gauss, J.; Cremer, D. J. Am. Chem. Soc. 1986, $108,5808$.
(16) The calculated ST4CCD/6-311 $+\mathrm{G}(2 \mathrm{df}, 2 \mathrm{p}) / / \mathrm{MP} 3 / 6-311 \mathrm{G}^{* *}$ total energies for $\mathbf{4}, \mathbf{5}, \mathrm{CH}_{2}{ }^{2+}$, and H_{2} are $-39.23163,-39.21462,-37.91290$ and -1.17079 hartrees, respectively.
(17) Koch, W.; Frenking, G.; Schwarz, H. J. Chem. Soc., Chem. Commun. 1985, 1119.
(18) Lammertsma, K.; Barzaghi, M.; Olah, G. A.; Pople, J. A.; Schleyer, P. v. R.; Simonetta, M. J. Am. Chem. Soc. 1983, 105, 5258.
(19) Lammertsma, K.; Olah, G. A.; Barzaghi, M.; Simonetta, M. J. Am. Chem. Soc. 1982, 104, 6851.
for the second-row analogue $\mathrm{SiH}_{4}{ }^{2+}$. We note also that 3 c - 2 e stabilization is a common structural feature in other carbodications: for example, $\mathrm{CH}_{6}{ }^{2+},{ }^{18} \mathrm{C}_{2} \mathrm{H}_{6}{ }^{2+},{ }^{19} \mathrm{C}_{2} \mathrm{H}_{8}{ }^{2+},{ }^{19}$ and $\mathrm{C}_{3} \mathrm{H}_{8}{ }^{2+} .{ }^{20,21}$
We have located a transition structure 4 for hydrogen scrambling in $\mathbf{1}$, but its energy is only $4 \mathrm{~kJ} \mathrm{~mol}^{-1}$ above $\mathbf{1}$. Hydrogen scrambling in $\mathbf{1}$ should, therefore, be very rapid, and the experimental identification of nonequivalent hydrogens in the planar $C_{2 v}$ structure will not be straightforward.
The perpendicular $C_{2 w}$ structure 5 lies $54 \mathrm{~kJ} \mathrm{~mol}^{-1}$ higher than 1 and corresponds to a rotational transition structure. It represents a weaker complex than the planar form 1, as reflected by the longer $\mathrm{C}-\mathrm{H}_{1}$ bond ($1.432 \AA$) and shorter $\mathrm{H}_{1}-\mathrm{H}_{4}$ distance (0.895 \AA). The preference for the planar structure $\mathbf{1}$ can be rationalized in terms of the back-donation from the pseudo- π orbital of the $\mathrm{CH}_{2}{ }^{2+}$ group in 1 to the σ^{*} orbital of H_{2}.

In conclusion, we have confirmed that the methane dication prefers a planar anti-van't Hoff geometry. We have shown, however, that it has $C_{2 v}$ symmetry rather than the previously accepted square-planar $D_{4 k}$ structure.

Acknowledgment. We gratefully acknowledge a generous allocation of computer time on the Fujitsu FACOM VP-100 of the Australian National University Supercomputer Facility.

[^1]
[^0]: (1) For a recent review, see: Koch, W.; Schwarz, H. Structure/Reactivity and Thermochemistry of Ions; Ausloos, P., Lias, S. G., Eds.; Reidel: Dordrecht, 1987.
 (2) (a) Spohr, P.; Bergmark, T.; Magnusson, N.; Werme, L. O.; Nordling, C.; Siegbahn, K. Phys. Scr. 1970, 2, 31. (b) Appell, J.; Durup, J.; Fehsenfeld, F. C.; Fournier, P. J. Phys. B 1974, 7, 406. (c) Ast, T.; Porter, C. J.; Proctor, C. J.; Beynon, J. H. Chem. Phys. Lett. 1981, 78, 439. (d) Stahl, D.; Maquin, F.; Gäumann, T.; Schwarz, H.; Carrupt, P.-A.; Vogel, P. J. Am. Chem. Soc. 1985, 107, 5049. (e) Fournier, P. G.; Fournier, J.; Salama, F.; Richardson, P. J.; Eland, J. H. D. J. Chem. Phys. 1985, 83, 241, (f) Dujardin, G.; Winkoun, D.; Leach, S. Phys. Rev. A 1985, 31, 3027. (g) Mathur, D.; Badrinathan, C.; Rajgara, F. A.; Raheja, U. T. Chem. Phys. 1986, 103, 447. (h) Griffiths, W. J.; Mathur, D.; Harris, F. M. J. Phys. B. 1987, 20, L493. (i) Leach, S. J. Mol. Struct. 1987, 157, 197.
 (3) (a) Gimarc, B. M. Tetrahedron Lett. 1977, 1859. (b) Hanner, A. W.; Moran, T. F. Org. Mass Spectrom. 1981, 16, 512. (c) Pople, J. A.; Tidor, B.; Schleyer, P. v. R. Chem. Phys. Lett. 1982, 88, 533. (d) Siegbahn, P. E. M. Chem. Phys. 1982, 66, 443.
 (4) A description of relevant basis sets and correlation procedures, unless specifically referenced, may be found in the following: Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; Wiley: New York, 1986.
 (5) The GAUSSIAN 86^{6} and GAMESS ${ }^{7}$ programs were used.
 (6) (a) Frisch, M. J.; Binkley, J. S.; Schlegel, H. B.; Raghavachari, K.; Melius, C. F.; Martin, R. L.; Stewart, J. J. P.; Bobrowicz, F. W.; Rohlfing, C. M.; Kahn, L. R.; DeFrees, D. J.; Whiteside, R. A.; Fox, D. J.; Fluder, E. M.; Pople, J. A. GAUSS1AN 86; Carnegie-Mellon University: Pittsburgh, PA 15213. Relevant modifications to the standard program are described in the following: (b) Baker, J. J. Comput. Chem. 1986, 7, 385. (c) Baker, J. J. Comput. Chem. 1987, $8,563$.
 (7) (a) Guest, M. F.; Kendrick, J.; Pope, S. A. GAMESS Documentation, SERC Daresbury Laboratory, Warrington, WA4 4AD, Great Britain. (b) Dupuis, M.; Spangler, D.; Wendoloski, J. J. NRCC Software Catalog, Vol. 1, Program No. QGO1, 1980.
 (8) The frozen-core approximation was employed in all correlation calculations except the MP2 optimizations.
 (9) Roos, B. O.; Taylor, P. R.; Siegbahn, P. E. M. Chem. Phys. 1980, 48, 157.
 (10) The full set of results may be found in the following: Wong, M. W. Ph.D. Thesis, Australian National University, 1988.

[^1]: (20) Wong, M. W.; Radom, L., to be published.
 (21) A preference for $C_{2 k}$ over $D_{4 n}$ symmetry in planar neutral methane has also been noted: Schleyer, P. v. R. WATOC World Congress, Budapest, Hungary 1987.

